کاربرد و مقایسه مدل سری زمانی تجمعی و مدل شبکه عصبی مصنوعی در پیش بینی تغییرات سطح آب زیرزمینی (مطالعه موردی: دشت مروست)

نویسندگان

حسین ملکی نژاد

ربابه پورشرعیانی

چکیده

پیش­بینی نوسانات سطح آب زیرزمینی، برای برنامه­ریزی مناسب­تر به­ویژه در مناطق خشک و نیمه خشک امری ضروری است. در این تحقیق برای پیش­بینی نوسانات سطح آب زیرزمینی در دشت مروست از مدل­های سری زمانی و شبکه عصبی استفاده شد. برای مدل­سازی، اطلاعات سطح آب زیرزمینی در طی سال­های 88-1366 استفاده و مدل­های مختلف سری زمانی تلفیقی و شبکه عصبی مصنوعی بر داده­ها برازش داده شد. کارآیی و دقت مدل­های آریما در پیش­بینی مقادیر آتی توسط معیار اطلاعاتی آکائیک و جذر مربع میانگین خطاها مورد ارزیابی قرار گرفت. نتایج بررسی حالت­های مختلف مدل آریما نشان داد که مدل آریما(1,1,0) بهترین برازش  را با داده­ها دارد. در مدل شبکه عصبی مصنوعی پیش خور با الگوریتم پس انتشار خطا از سه تابع آموزشی لونبرگ مارکوآرت، پس انتشار ارتجاعی و شیب توأم مقیاس شده استفاده شد. با توجه به نتایج به دست آمده از بین سه تابع آموزشی، تابع لونبرگ مارکوآرت به عنوان بهترین تابع آموزشی برای پیش­بینی سطح آب زیرزمینی انتخاب گردید. برای ارزیابی و انتخاب روش بهتر، بین مدل سری زمانی تلفیقی آریما (1,1,0)و مدل شبکه عصبی پیش خور با الگوریتم پس انتشار خطا، از آماره­های میانگین مربع خطاها، میانگین قدر مطلق خطاها و ضریب بازدهی استفاده شد که مدل شبکه عصبی نسبت به سری زمانی تلفیقی برتری جزئی نشان داد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

کاربرد و مقایسه مدل سری زمانی تجمعی و مدل شبکه عصبی مصنوعی در پیش‌بینی تغییرات سطح آب زیرزمینی (مطالعه موردی: دشت مروست)

پیش­بینی نوسانات سطح آب زیرزمینی، برای برنامه­ریزی مناسب­تر به­ویژه در مناطق خشک و نیمه خشک امری ضروری است. در این تحقیق برای پیش­بینی نوسانات سطح آب زیرزمینی در دشت مروست از مدل­های سری زمانی و شبکه عصبی استفاده شد. برای مدل­سازی، اطلاعات سطح آب زیرزمینی در طی سال­های 88-1366 استفاده و مدل­های مختلف سری زمانی تلفیقی و شبکه عصبی مصنوعی بر داده­ها برازش داده شد. کارآیی و دقت مدل­های آریما در پیش...

متن کامل

کاربرد و مقایسه مدل سری زمانی تجمعی و مدل شبکه عصبی مصنوعی در پیش بینی تغییرات سطح آب زیر زمینی (مطالعه موردی: دشت مروست)

پیش ینی نوسانات سطح آب زیرزمینی، برای برنامه ریزی مناسب تر بویژه در مناطق خشک و نیمه خشک امری ضروری است. روند کلی هیدروگراف معرف آب زیرزمینی دشت مروست، براساس اطلاعات سطح آب زیرزمینی در طی سال های گذشته نزولی و نشانگر وقوع افت مداوم و کاهش ذخایر آب زیرزمینی می باشد. در این تحقیق برای پیش بینی نوسانات سطح آب زیرزمینی در دشت مروست از مدل های سری زمانی برای پیش بینی وضعیت سطح آب زیرزمینی استفاده ش...

15 صفحه اول

کاربرد مدل شبکه عصبی- موجک برای پیش بینی ویژگی های غیرایستا و غیرخطی سری زمانی تراز آب زیرزمینی

سفره ‏های آب زیرزمینی غالباً به عنوان سیستم ‏هایی با ویژگی ‏های غیرایستا و غیرخطی شناخته می ‏شوند. مدل‏ سازی این سیستم ‏ها و پیش ‏بینی حالت ‏های آینده آن ‏ها نیازمند تشخیص این ویژگی‏ های بنیادی است. اخیراً، آنالیز موجک به دلیل توانایی آن در رمزگشایی ویژگی‏ های اشاره‏ شده، به طور گسترده ‏ای در زمینه پیش ‏بینی سری‏ های زمانی هیدرولوژیکی مورد استفاده قرار گرفته ‏است. در این مقاله توانایی مدل ترکیبی ...

متن کامل

پیش بینی سطح آب زیرزمینی با استفاده از مدل ترکیبی سری زمانی-موجک (مطالعه موردی: دشت فیروزآباد)

در سال­های اخیر، پدیده تغییراقلیم، خشک­سالی، برداشت بی­رویه آب­های زیرزمینی،... باعث افت شدید سطح آب­های زیرزمینی شده است؛ که خطراتی هم­چون نشست زمین و افزایش کویری شدن را در پی داشته است. لذا پیش­بینی قابل اطمینان سطح آب­های زیرزمینی برای مدیریت این منابع، حائز اهمیت است. امروزه تبدیل موجک از طریق تجزیه سیگنال­ها به زمان و فرکانس شیوه نوینی را برای پردازش سیگنال ارائه می­دهد. در پژوهش حاضر، به...

متن کامل

پیش بینی تغییرات سطح آب زیرزمینی دشت همدان-بهار با مدل سری های زمانی

دشت همدان- بهار، یکی از چهاردشت منطقه همدان است. وسعت گسترش سفره آبدار اصلی موجود در آبرفت های این دشت، حدود 520 کیلومترمربع می باشد. این سفره، از طریق نفوذ مستقیم از ریزش های جوی، نفوذ از جریان های سطحی، آب برگشتی از مصارف کشاورزی، شرب و صنعت و هم چنین ورودی های زیرزمینی تغذیه و از طریق برداشت از آب زیرزمینی برای مصارف مختلف و هم چنین خروجی زیرزمینی تخلیه می گردد. روند کلی هیدروگراف معرف آب زی...

متن کامل

مقایسه کارایی مدل شبکه عصبی مصنوعی، سری زمانی و مدل ترکیبی ANN-ARIMA در مدلسازی و پیش‌بینی شاخص منبع آب زیرزمینی (GRI) (مطالعه موردی: جنوب استان قزوین)

خشکسالی آب زیرزمینی یکی از انواع خشکسالی است که در اثر تغذیه ناکافی مخازن سفره‌های آب زیرزمینی بوجود آمده و شاخص منبع آب زیرزمینی (GRI) به عنوان روشی برای بیان وضعیت سطح آب زیرزمینی محسوب می‌شود. تاکنون روش‌ها و مدل‌های مختلفی برای پیش‌بینی و مدل‌سازی این پدیده ارائه شده است اما از آنجا که انتخاب یک مدل مناسب کار مشکلی می‌باشد می‌توان به جای استفاده از یک مدل؛ ترکیبی از مدل‌های منفرد قابل قبول ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
علوم و مهندسی آبیاری

ناشر: دانشگاه شهید چمران اهواز - دانشکده مهندسی علوم آب

ISSN 0254-3648

دوره 36

شماره 3 2013

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023